Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(E)-3-Bromo-N-(1,3-oxazolidin-2-ylidene)benzamide

Junke Wang, Junfeng Bai and Yi Pan*

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: njupanyi@yahoo.com.cn

Received 16 November 2007; accepted 24 November 2007
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.046 ; w R$ factor $=0.109$; data-to-parameter ratio $=14.5$.

The five- and six-membered rings in the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$, are essentially coplanar. This is consistent with a highly conjugated system, as seen in the short $\mathrm{N}-\mathrm{C}$ bond distances of 1.308 (6) and 1.317 (5) Å.

Related literature

For related literature, see: Allen (2002); Aoi \& Okada (1996); Decken et al. (2006); Eisnor et al. (2006); Meyers (2005).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$
$M_{r}=269.10$
Monoclinic, $P 2_{1} / n$
$a=8.3877(9) \AA$
$b=12.5593(14) \AA$
$c=10.1907(12) \AA$
$\beta=107.222(2)^{\circ}$

Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\text {min }}=0.32, T_{\text {max }}=0.38$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \quad \mathrm{H}$ atoms treated by a mixture of
$\begin{array}{ll}w R\left(F^{2}\right)=0.109 & \text { independent and constrained } \\ S=0.99 & \text { refinement }\end{array}$
$S=0.99$
2016 reflections
139 parameters

5489 measured reflections 2016 independent reflections
1523 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$
refinement
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.68 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N} 1$	0.93	2.50	$2.817(6)$	100

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Financial support from the 863 High Technology Programme, the Qing-Lan Programme of Jiangsu Province, the Kua-Shi-Ji Programme of the Education Ministry of China, the Talent Foundation of Jiangsu Province (grant No. BK2006513), the Major State Basic Research Development Programme (grant No. 2006CB806104) and the Twenty-one Century Talent Foundation of the Ministry of Education is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2220).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Aoi, K. \& Okada, M. (1996). Prog. Polym. Sci. 21, 151-208.
Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Decken, A., Eisnor, C. R., Gossage, R. A. \& Jackson, S. M. (2006). Inorg. Chim. Acta, 359, 1743-1753.
Eisnor, C. R., Gossage, R. A. \& Yadav, P. N. (2006). Tetrahedron, 62, 33953401.

Meyers, A. I. (2005). J. Org. Chem. 70, 6137-6151.

supplementary materials

(E)-3-Bromo- N -(1,3-oxazolidin-2-ylidene)benzamide

J. Wang, J. Bai and Y. Pan

Comment

2-Oxazolines are an important class of heterocyclic compounds which have been applied to a number of areas of chemical endeavour. For example, asymmetric organic synthesis (Meyers, 2005), polymerization chemistry (Aoi \& Okada, 1996), Lewis acid catalysis (Eisnor et al., 2006), and coordination chemistry (Decken et al., 2006). Although their coordination complexes are widespread used, few metal-free species have been characterized crystallographically (Allen, 2002). Herein, the molecular structure of the title compound (I) is described.

The bond lengths and angles determined for (I) have the usual values found for structurally similar molecules (Allen, 2002). The existence of a conjugated system is found in the values of the $\mathrm{N} 1-\mathrm{C} 8[1.308$ (6) \AA] and $\mathrm{N} 2 — \mathrm{C} 8[1.317$ (5) \AA] bond distances. The dihedral angle between the aryl rings and the oxazolidine ring is $1.82(2)^{\circ}$ and the $\mathrm{C} 4-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$ torsion angle is $179.10(4)^{\circ}$, indicating planarity of the model.

Experimental

To a solution of 4-chlorobenzoyl chloride (1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added ammonium thiocyanate (1.3 mmol) and PEG-400 (0.1 mmol). The mixture was then stirred at room temperature for 1 h . A solution of 2-aminoethanol (0.9 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added. The mixture was continuously stirred for 30 min . After the reaction was completed, water (10 ml) was added and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed under vacuum and the residue was purified by flash chromatography to give 1-(3-bromobenzoyl)-3-(2-hydroxyethyl)thiourea in 95\% yield. This compound was reacted with dicyclohexylcarbodiimide under weakly basic conditions in acetonitrile to give (I) in 93% yield. Single crystals suitable for the X-ray diffraction study were obtained by slow evaporation of an acetone/water solution of (I); m. p. 374-375 K.

Refinement

The positional parameters of the $\mathrm{N}-\mathrm{H}$ atom were refined freely with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}) ; \mathrm{N}-\mathrm{H}=0.91$ (6) \AA. The C-bound H atoms were included in the riding model approximation with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

supplementary materials

(E)-3-Bromo- N -(1,3-oxazolidin-2-ylidene)benzamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$
$M_{r}=269.10$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=8.3877$ (9) \AA
$b=12.5593$ (14) \AA
$c=10.1907(12) \AA$
$\beta=107.222$ (2) ${ }^{\circ}$
$V=1025.4(2) \AA^{3}$
$Z=4$
$F_{000}=536$
$D_{\mathrm{x}}=1.743 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2276 reflections
$\theta=2.6-27.0^{\circ}$
$\mu=3.99 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, colourless
$0.30 \times 0.26 \times 0.24 \mathrm{~mm}$

2016 independent reflections
1523 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=2.7^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 12$
$l=-8 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.109$
$S=0.99$
2016 reflections
139 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0638 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.68$ e \AA^{-3}
Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Br1	$0.04206(6)$	$1.43302(3)$	$0.32211(5)$	$0.04284(18)$
C1	$0.0393(6)$	$1.1042(4)$	$0.3277(5)$	$0.0444(10)$
C2	$0.0857(6)$	$1.2085(4)$	$0.3458(5)$	$0.0490(11)$
H2	0.1950	1.2257	0.3946	0.059^{*}
C3	$-0.0281(6)$	$1.2896(4)$	$0.2923(5)$	$0.0404(10)$
C4	$-0.1893(6)$	$1.2665(4)$	$0.2181(5)$	$0.0455(11)$
H4	-0.2645	1.3206	0.1801	0.055^{*}
C5	$-0.2374(5)$	$1.1618(4)$	$0.2011(5)$	$0.0502(11)$
H5	-0.3472	1.1450	0.1532	0.060^{*}
C6	$-0.1254(5)$	$1.0807(4)$	$0.2540(5)$	$0.0436(10)$
H6	-0.1600	1.0101	0.2404	0.052^{*}
C7	$0.1639(6)$	$1.0192(4)$	$0.3880(5)$	$0.0444(10)$
C8	$0.2087(5)$	$0.8408(3)$	$0.4213(4)$	$0.0371(9)$
C9	$0.4320(5)$	$0.7332(4)$	$0.5310(5)$	$0.0456(11)$
H9A	0.4701	0.7237	0.6299	0.055^{*}
H9B	0.5225	0.7167	0.4931	0.055^{*}
C10	$0.2784(5)$	$0.6662(4)$	$0.4651(5)$	$0.0476(11)$
H10A	0.2988	0.6185	0.3969	0.057^{*}
H10B	0.2479	0.6242	0.5339	0.057^{*}
N1	$0.1044(5)$	$0.9177(3)$	$0.3686(5)$	$0.0496(10)$
N2	$0.3674(5)$	$0.8409(3)$	$0.4935(4)$	$0.0446(9)$
H2A	$0.372(6)$	$0.884(5)$	$0.566(5)$	0.053^{*}
O1	$0.3084(4)$	$1.0460(3)$	$0.4488(5)$	$0.0657(12)$
O2	$0.1470(4)$	$0.7416(2)$	$0.4011(3)$	$0.0413(7)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0564(3)$	$0.0335(3)$	$0.0415(3)$	$-0.0033(2)$	$0.01904(19)$	$-0.00697(19)$
C1	$0.044(2)$	$0.037(2)$	$0.050(3)$	$0.000(2)$	$0.012(2)$	$-0.003(2)$
C2	$0.046(3)$	$0.046(3)$	$0.052(3)$	$-0.006(2)$	$0.011(2)$	$-0.008(2)$
C3	$0.039(2)$	$0.033(2)$	$0.050(3)$	$-0.0011(18)$	$0.0145(19)$	$-0.0056(18)$

C4	$0.042(2)$	$0.039(2)$	$0.054(3)$	$0.0062(19)$	$0.012(2)$	$-0.003(2)$
C5	$0.028(2)$	$0.048(3)$	$0.068(3)$	$0.0001(19)$	$0.004(2)$	$0.000(2)$
C6	$0.032(2)$	$0.037(2)$	$0.058(3)$	$-0.0041(18)$	$0.0079(19)$	$-0.002(2)$
C7	$0.045(2)$	$0.034(2)$	$0.049(3)$	$-0.0020(19)$	$0.006(2)$	$-0.0057(19)$
C8	$0.027(2)$	$0.038(2)$	$0.044(2)$	$-0.0029(16)$	$0.0072(16)$	$-0.0023(18)$
C9	$0.030(2)$	$0.045(2)$	$0.061(3)$	$-0.0017(18)$	$0.011(2)$	$0.006(2)$
C10	$0.038(2)$	$0.035(2)$	$0.073(3)$	$0.0006(19)$	$0.020(2)$	$0.006(2)$
N1	$0.046(2)$	$0.036(2)$	$0.059(2)$	$-0.0029(18)$	$0.0049(18)$	$0.0021(18)$
N2	$0.0314(19)$	$0.038(2)$	$0.056(2)$	$-0.0071(15)$	$-0.0002(17)$	$0.0013(18)$
O1	$0.0422(19)$	$0.0362(19)$	$0.101(3)$	$-0.0062(15)$	$-0.0059(19)$	$-0.0101(19)$
O2	$0.0309(14)$	$0.0372(16)$	$0.0486(17)$	$-0.0080(12)$	$0.0005(12)$	$0.0050(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 3$	$1.891(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.364(7)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.395(6)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.494(7)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(7)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.371(6)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.371(7)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.383(6)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{O} 1$	$1.233(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.3(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$119.6(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$122.1(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.0(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.7(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$	$120.0(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	$119.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.6(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.7
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.1(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.4
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.4
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.3(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.9
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.9
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$118.4(4.3(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	
$\mathrm{~N} 1-\mathrm{C} 7-\mathrm{C} 1$	

C7-N1	1.362 (6)
C8-N1	1.308 (6)
$\mathrm{C} 8-\mathrm{N} 2$	1.317 (5)
C8-O2	1.340 (5)
C9-N2	1.466 (6)
C9-C10	1.519 (6)
C9-H9A	0.9700
C9-H9B	0.9700
C10-O2	1.453 (5)
C10-H10A	0.9700
C10-H10B	0.9700
N2-H2A	0.91 (6)
N1-C8-N2	132.1 (4)
N1-C8-O2	116.3 (4)
N2-C8-O2	111.6 (4)
N2-C9-C10	101.3 (3)
N2-C9-H9A	111.5
C10-C9-H9A	111.5
N2-C9-H9B	111.5
C10-C9-H9B	111.5
H9A-C9-H9B	109.3
O2-C10-C9	105.6 (3)
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	110.6
C9-C10-H10A	110.6
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	110.6
C9-C10-H10B	110.6
H10A-C10-H10B	108.8
C8-N1-C7	117.4 (4)
C8-N2-C9	112.3 (4)
C8-N2-H2A	104 (3)
C9-N2-H2A	115 (4)
C8-O2- C 10	109.2 (3)

sup-4

supplementary materials

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N} 1$	0.93	2.50	$2.817(6)$	100

supplementary materials

Fig. 1

